

2 hr), left in the refrigerator overnight, filtered and solvent removed. A small portion of the Et_2O -soluble fraction when submitted to TLC [*n*-hexane- Et_2O (2:1), 2 developments] gave **1** which was purified by further TLC (same solvent system). Another portion of the Et_2O -soluble fraction when submitted to Silica gel CC (120 g packed in *n*-hexane) gave nine fractions 1 [*n*-hexane- Et_2O (2:1)], 2-4 [*n*-hexane- Et_2O (1:1)], 5-8 (Et_2O) and 9 [CH_2Cl_2 -MeOH (1:1)], from which **2-4** were isolated as follows.

Fraction 1, which contained **2**, was initially submitted to Silica gel CC and the fraction eluted with *n*-hexane- Et_2O (4:1) gave **2** on further TLC [*n*-hexane- Et_2O -AcOH (25:10:1)].

Fractions 6-7 gave **3** when submitted to TLC [*n*-hexane- CHCl_3 -AcOH (10:10:3), 1 development].

TLC of Fr. 2 [*n*-hexane- Et_2O -AcOH (15:9:1), 2 developments] gave **4**, ^{13}C NMR (δ , CDCl_3) (for C-1 to C-20, in order) 27.1, 64.1, 135.8, 144.4, 37.9 or 38.3, 35.2, 27.1, 36.0, 37.9 or 38.3, 41.1, 38.6, 17.4, 125.6, 142.4, 111.0, 138.3, 172.2, 18.6 or 18.8, 15.7 and 18.6 or 18.8, in accord with the structure.

The spectral properties of **1-4** are described in the text.

Acknowledgments.—We thank Dr S. P. McLaughlin for plant collection and identification and Mr Peter Baker for mass spectral data. This work was supported by the National Science Foundation (Grant PCM-8304771).

REFERENCES

- Bohlmann, F and Jakupovic, J (1979) *Phytochemistry* **18**, 1367
- Dominguez, X A, Quintero, G and Butruille D (1972) *Phytochemistry* **11**, 1855
- Hammouda, F, Rizk, A and El Kady, M S (1979) *Pharmazie* **34**, 112
- Tandon, S and Rastogi, R P (1979) *Phytochemistry* **18**, 494
- Bohlmann, F and Grenz, M (1972) *Chem. Ber.* **105**, 3123
- Bohlmann, F and Wegner P (1982) *Phytochemistry* **21**, 1693
- Pandey, U C, Singhal, A K, Barua, N C, Sharma, R P, Baruah, J N, Watanabe, K, Kulanthavel P and Herz W (1984) *Phytochemistry* **23**, 391
- Correll, D and Johnston, M (1970) *Manual of the Vascular Plants of Texas* Texas Research Foundation, Renner Texas
- Bohlmann, F and Mahanta, P (1979) *Phytochemistry* **18**, 1067
- Misra, R, Pandey, R and Dev, S (1964) *Tetrahedron Letters* **49**, 3751
- Wasner, H, Seitz, R, Chari, V, Lotter, H and Herz, W (1977) *Tetrahedron Letters* **35**, 3039
- Wasner, H, Seitz, R, Lotter, H and Herz, W (1978) *J. Org. Chem.* **43**, 3339
- Gianello, I and Giordano, O (1982) *Rev. Latinoam. Quim.* **13**, 76
- Jeffries, P, Knox, I and Scaife, R (1973) *Aust. J. Chem.* **26**, 2199

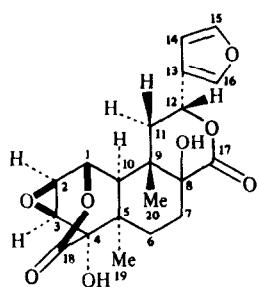
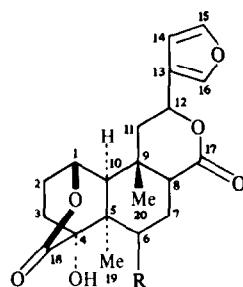
A NEW CLERODANE DERIVATIVE FROM *TINOSPORA CORDIFOLIA*

R K BHATT, JAMPANI B HANUMAN and B. K SABATA*

Department of Chemistry, Indian Institute of Technology, Bombay 400076, India

(Revised received 21 August 1987)

Key Word Index—*Tinospora cordifolia*, Menispermaceae, new clerodane diterpenoid



Abstract—A new clerodane diterpenoid has been isolated from the stems of *Tinospora cordifolia*. Its structure was established by spectroscopic means and by comparison with closely related clerodane derivatives.

INTRODUCTION

Chemical investigation of *Tinospora cordifolia* has led to the isolation of a phenolic lignan and one diterpenic furano lactone which were reported earlier [1, 2]. In the

present paper the isolation and structure of a new clerodane derivative, isolated from the same plant is reported. The structure (**1**) was deduced mainly with the help of ^1H NMR, spin-decoupling and ^{13}C NMR studies along with the comparison of the spectral data of closely related clerodane diterpenoids such as 6-hydroxy arcangelisin (**2**) [3], fibraurin (**3a**) [4], 6-hydroxy fibraurin (**3b**) [3, 4], palmarin (**4**) [5-7] and 8-hydroxy columbin (**5**) [8].

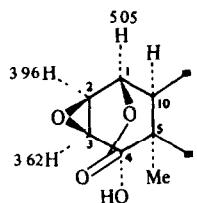
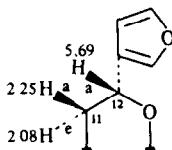
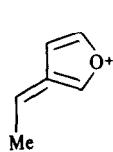
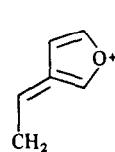
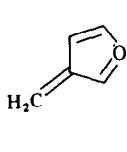
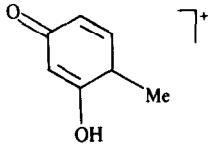
* Author to whom correspondence should be addressed

1**2** $R = OH$, 2,3 - epoxide**3a** $R = H$, 2,3 - epoxide, 7,8 - dehydro**3b** $R = OH$, 2,3 - epoxide, 7,8 - dehydro**4** $R = H$, 2,3 - epoxide**5** $R = H$, 8 hydroxy, 2,3 - dehydro

RESULTS AND DISCUSSION

The molecular formula $C_{20}H_{22}O_8$ for the terpene was established from its mass spectrum $[M]^+$, m/z 390 and elemental analysis. The IR spectrum (Table 1) showed characteristic absorption for hydroxyl groups (3500 , 3480 cm^{-1}), two lactone carbonyls (1750 , 1720 cm^{-1}), a furan ring (3180 , 1510 , 1020 , 880 cm^{-1} , positive Ehrlich test) and an epoxide ring (3160 , 1210 cm^{-1} symmetrical stretchings, 950 – 850 and 860 – 740 cm^{-1} asymmetric stretchings)

The 1H NMR spectrum of the new compound was very similar to that of other furanoditerpenoids and the assignments are given in the Table 2. The signals at δ 7.71 (1H, *br s*), δ 7.67 (1H, *br s*) and δ 6.55 (1H, *br s*) were assigned to two α - and one β -protons of a β -substituted furan moiety. Two angular methyl groups were observed as singlets at δ 1.06 and 1.11 (3H each). Two D_2O exchangeable singlets at δ 6.29 and 6.08 (1H each) were observed and assigned to two tertiary hydroxyl groups. The signals at δ 5.69 (1H, *dd*, $J_1 = 11.8$, $J_2 = 5.1\text{ Hz}$), δ 2.25 (1H, *dd*, $J_1 = 14.3$, $J_2 = 12.0\text{ Hz}$) and δ 2.08 (1H,

 $J_{1,2} = 1.9\text{ Hz}$
 $J_{2,3} = 4.1\text{ Hz}$
A
 $J_{11a,12a} = 1.2\text{ Hz}$
 $J_{11e,12a} = 5.1\text{ Hz}$
 $J_{11a,11e} = 14.3\text{ Hz}$
B**a****b****c****d**

Table 1 Infrared spectral data of diterpenoid furanolactones

Functional groups	1	2	3a	3b	4	5
OH	3500	3300	3460	3500	3470	3500
	3480			3400		3450
δ -Lactones	1750	1780	1766	1773	1771	1750
	1720	1705	1690	1717	1700	1735
Furan ring						1705
	3180	1508	3120	1507	1504	
	1510	1022	1600	873	881	
	1020	875	1505	810		
	880	812	1021			
Epoxide	800		874			
			815			
	3160				3150	
	1210					
950–850						
860–740						

* Absorption frequencies are in cm^{-1} , recorded in Nujol

Table 2 ^1H NMR spectral data of diterpenoid furanolactones

H	1*	2	3a	3b	4	5
1	5.05 (<i>d</i> , $J = 1.9$)	5.00	5.08	5.10	4.93	5.54
2	3.96 (<i>dd</i> , $J_1 = 4.1$, $J_2 = 1.9$)	3.88	3.87	3.91	3.80	6.68
3	3.62 (<i>d</i> , $J = 4.1$)	3.67	3.65	3.74	3.60	6.42
6	1.60 (<i>dd</i> , $J_1 = 14.8$, $J_2 = 8.9$)	-	1.71 and	4.33	1.50- 1.65	
6	1.51 (<i>dd</i> , $J_1 = 14.4$, $J_2 = 8.9$)	3.92	2.30			
7	2.85 (<i>m</i>)	2.07		7.25	6.86	3.06
7	1.34 (<i>m</i>)	1.65				1.50- 1.65
8	—	2.97	-		2.74	-
10	1.95 (<i>br s</i>)	1.78	1.74	1.90	1.60	1.86
11	2.25 (<i>dd</i> , $J_1 = 14.3$, $J_2 = 12.0$)	1.88	1.97 and	2.04 and	and	2.25
11	2.08 (<i>dd</i> , $J_1 = 14.3$, $J_2 = 5.1$)	2.31	2.30	2.29		2.40
12	5.69 (<i>dd</i> , $J_1 = 11.8$, $J_2 = 5.1$)	5.46	5.60	5.68	5.46	5.76
14	6.55 (<i>br s</i>)	6.65	6.64	6.64	6.63	6.69
15	7.67 (<i>br s</i>)	7.68	7.67	7.69	7.62	7.63
16	7.71 (<i>br s</i>)	7.75	7.76	7.76	7.70	7.77
19	1.11 (<i>q</i>)	1.26	1.06 1.15	1.16	1.18	1.20
20	1.06 (<i>q</i>)	1.05		1.18	1.04	1.00
4-OH	6.29 (<i>br s</i>)	6.06	6.38	6.34	6.24	5.16
6-OH	—	5.54	--	5.51		
8-OH	6.08 (<i>br s</i>)	—	—	—	—	4.83

* At 500 MHz, chemical shifts are in δ values from TMS, coupling constants (J) in Hz, in $\text{DMSO}-d_6$ solution

dd, $J_1 = 14.3$, $J_2 = 5.1$ Hz) were assigned to an 'ABX' system as given in the part structure 'B' (C-11, C-12). Two multiplets were observed at $\delta 2.85$ and 1.34 (1H each) which were assigned to protons at C-7. The down field signal at $\delta 2.85$ was assigned to an axial proton on C-7 which experiences the anisotropic effect of the lactone carbonyl group. The signals at $\delta 5.05$ (1H, *d*, $J = 1.9$ Hz), $\delta 3.96$ (1H, *dd*, $J_1 = 4.1$, $J_2 = 1.9$ Hz) and $\delta 3.62$ (1H, *d*, $J = 4.1$ Hz) could be explained by considering an epoxide ring in the part structure 'A'. The presence of partial structures 'A' and 'B' were confirmed on the basis of 100 MHz ^1H NMR spin-decoupling experiments.

On irradiating the signal at $\delta 5.05$ (H-1), the signal at $\delta 3.96$ (H-2) was collapsed into a doublet ($J_{2,3} = 4.1$ Hz). On irradiating the signal at $\delta 3.96$ (H-2), the signals at $\delta 5.05$ (H-1) and $\delta 3.62$ (H-3) were collapsed into two clean singlets. These observations supported the presence of partial structure 'A'.

When the signal at $\delta 5.69$ (H-12, X of ABX) was irradiated, the signals at $\delta 2.25$ and 2.08 (H_a -11 and H_e -11, AB of ABX) collapsed into two doublets ($J_{AB} = 14.3$ Hz). Irradiation of the signal at $\delta 2.25$ (H_a -11, B of ABX), caused the signals at $\delta 5.69$ and 2.08 (H_a -12 and H_e -11, AX of ABX system) to collapse into two doublets ($J_{AX} = 5.1$ Hz). These observations suggested a partial structure 'B' having an axial proton at C-12 and vicinal methylene protons at C-11. A broad singlet was observed for H-10 showing a very small coupling constant between the vicinal axial-equatorial protons (H-1, H-10) [9]. This clearly indicated the *trans* diaxial relationship of the C-1 lactone oxygen and H-10.

The stereochemistry of the epoxide is deduced from the coupling constant values between H-1, H-2 and between H-2, H-3. For β -epoxides these values are of the order of 2.3 Hz and 4.2 Hz, respectively (Table 3). In compound

Table 3 Coupling constants between H-1, H-2 and H-2, H-3 in the 2,3- β epoxide moiety of diterpenoid furanolactones

	$J_{1,2}^*$	$J_{2,3}^*$	Ref
Fibraurin	2.9	4.2	[4]
A derivative of fibraurin	2.2	4.2	[4]
Palmarin	3.0	4.2	[7]
A derivative of palmarin	2.0	4.0	[7]
Compound (1)	1.9	4.1	—

*Coupling constants (*J*) in Hz

(1) the coupling constants between H-1, H-2 and H-2, H-3 are 1.9 and 4.1 Hz, respectively. Hence, the epoxide group present in the compound could be β .

The noise decoupled and single frequency off-resonance ^{13}C NMR spectrum contained signals arising from two methyl carbons (*q*, $\delta 20.1$ and 22.8), three methylene carbons (*t*, $\delta 26.1$, 26.6 and 34.5), five methine carbons (*d*, $\delta 45.6$, 49.2 , 51.1 , 69.9 and 70.6), three furanoid carbons (*d*, $\delta 109.1$, 140.1 and 143.9), five quaternary carbons (*s*, $\delta 39.0$, 40.5 , 71.7 , 80.4 and 125.5) and two lactone carbonyl carbons (*s*, $\delta 171.6$ and 173.1). These values compared well with the values reported for clerodane derivatives (Table 4).

Manbe and Nishino [10] reported the usefulness of ^{13}C chemical shifts of angular methyls to distinguish between *cis* and *trans* A/B-ring junction in clerodane diterpenes. In the case of *cis* clerodanes, the C-19 methyl carbon atom resonates in a region above $\delta 20$ and in corresponding *trans* compounds it resonates in the region $\delta 11$ – 19 . The C-19 methyl signal of compound (1) was found at $\delta 22.8$, and hence it is concluded that the A/B-ring junction is *cis*.

Table 4 ^{13}C NMR chemical shifts of diterpenoid furanolactones

C	1*	2	3a	3b	4	5
1	69.9 <i>d</i>	69.2 <i>d</i>	69.7 <i>d</i>	69.9 <i>d</i>	69.4 <i>d</i>	73.1 <i>d</i>
2	49.2 <i>d</i>	49.1 <i>d</i>	49.5 <i>d</i>	49.4 <i>d</i>	49.2 <i>d</i>	130.3 <i>s</i>
3	51.1 <i>d</i>	50.5 <i>d</i>	51.6 <i>d</i>	51.1 <i>d</i>	50.9 <i>d</i>	136.5 <i>s</i>
4	80.4 <i>s</i>	82.7 <i>s</i>	80.0 <i>s</i>	82.0 <i>s</i>	80.3 <i>s</i>	80.6 <i>s</i>
5	38.9 <i>s</i>	34.8 <i>s</i>	35.2 <i>s</i>	35.2 <i>s</i>	40.4 <i>s</i>	37.0 <i>s</i>
6	26.1 <i>t</i>	69.3 <i>d</i>	31.2 <i>t</i>	70.2 <i>d</i>	25.3 <i>t</i>	26.6 <i>t</i>
7	26.6 <i>t</i>	27.3 <i>t</i>	142.1 <i>d</i>	145.8 <i>d</i>	16.5 <i>t</i>	26.7 <i>t</i>
8	71.7 <i>s</i>	43.1 <i>d</i>	133.7 <i>s</i>	131.1 <i>s</i>	41.8 <i>d</i>	72.2 <i>s</i>
9	40.5 <i>s</i>	43.4 <i>s</i>	44.8 <i>s</i>	48.7 <i>s</i>	34.6 <i>s</i>	39.5 <i>s</i>
10	45.6 <i>d</i>	55.5 <i>d</i>	54.0 <i>d</i>	55.1 <i>d</i>	53.0 <i>d</i>	46.5 <i>d</i>
11	34.5 <i>t</i>	43.2 <i>t</i>	42.0 <i>t</i>	42.0 <i>t</i>	43.2 <i>t</i>	34.7 <i>t</i>
12	70.6 <i>d</i>	71.3 <i>d</i>	70.6 <i>d</i>	71.0 <i>d</i>	70.9 <i>d</i>	70.6 <i>d</i>
13	125.5 <i>s</i>	125.2 <i>s</i>	125.0 <i>s</i>	124.8 <i>s</i>	125.0 <i>s</i>	125.5 <i>s</i>
14	109.1 <i>d</i>	109.1 <i>d</i>	109.1 <i>d</i>	109.0 <i>d</i>	108.8 <i>d</i>	109.1 <i>d</i>
15	140.1 <i>d</i>	140.4 <i>d</i>	140.4 <i>d</i>	140.4 <i>d</i>	139.9 <i>d</i>	140.2 <i>d</i>
16	143.9 <i>d</i>	143.8 <i>d</i>	143.9 <i>d</i>	143.9 <i>d</i>	143.4 <i>d</i>	143.8 <i>d</i>
17	173.1 <i>s</i>	171.7 <i>s</i>	171.5 <i>s</i>	171.1 <i>s</i>	172.0 <i>s</i>	174.5 <i>s</i>
18	171.6 <i>s</i>	171.4 <i>s</i>	163.2 <i>s</i>	169.1 <i>s</i>	172.9 <i>s</i>	171.2 <i>s</i>
19	22.8 <i>q</i>	17.2 <i>q</i>	25.0 <i>q</i>	21.3 <i>q</i>	23.6 <i>q</i>	24.0 <i>q</i>
20	20.1 <i>q</i>	18.4 <i>q</i>	20.7 <i>q</i>	18.4 <i>q</i>	17.4 <i>q</i>	19.8 <i>q</i>

*Chemical shifts are in δ values from TMS at 125 MHz, in $\text{DMSO-}d_6$ solution.

The proposed structure (**1**) as a diterpenoid furano lactone clearly satisfied the above spectral data. The mass fragmentation pattern also supported the structure (**1**). The mass spectrum gave peaks at m/z 390 [$M]^+$, 346 [$M - CO_2]^+$, 95, 94 and 81 which are due to the fragments 'a', 'b' and 'c', respectively, in accord with similar diterpenoid furano lactones [4, 11]. A characteristic and base peak at m/z 124 is assigned to the ion 'd' which arises by the retro-Diels-Alder type fragmentation of ring B.

EXPERIMENTAL

Mps. uncorr. IR spectra were recorded in Nujol. The proton spin-decoupling NMR expts were carried out at 100 MHz.

*Extraction and isolation of (**1**).* Stems of *T. cordifolia* Muell. (26 kg) were collected from IIT Campus, Bombay and identified by Dr. Agarkar, Institute of Science, Bombay. The stems were dried, finely powdered and extd with $CHCl_3$ (60 l) in a Soxhlet for 48 hr. Repeated CC over silica gel with 70% EtOAc-petrol (60–80°) (7:3) afforded (**1**) which was recrystallized from MeOH (9:8:1, 3:1:10, 3%) as colourless crystals, mp. 231–233° (decomp); $[\alpha]_D^{20} = +28.2$ (DMSO, c 0.62). IR ν_{max}^{Nujol} cm^{-1} (Table 1), UV λ_{max}^{MeOH} $\log \epsilon$ 207.8 nm (3.8). 1H NMR (500 MHz, DMSO- d_6) (Table 2), ^{13}C NMR (125 MHz, DMSO- d_6) (Table 4), MS m/z 390, [$M]^+$ (0.5%), 346 [$M - CO_2]^+$ (1), 291 (1), 252 (25), 199 (2), 125 (24), 124 (100), 95 (38), 94 (32), 93 (12), 91 (25), 81 (33). Anal. calcd for $C_{20}H_{22}O_8$: C, 61.53; H, 5.68. Found: C, 61.29, H, 5.54%.

Acknowledgement—The use of facilities provided by the 500 MHz FT-NMR National Facility at TIFR, Bombay are gratefully acknowledged.

REFERENCES

1. Hanuman, J. B., Bhatt, R. K. and Sabata, B. K. (1986) *Phytochemistry* **25**, 1677
2. Hanuman, J. B., Anil Kumar Mishra and Sabata B. K. (1986) *J. Chem. Soc. Perkin Trans I* 1181
3. Kunit, T., Kagei, K., Kawakami, Y., Nagai, Y., Nezu, Y. and Sato, T. (1985) *Chem. Pharm. Bull.* **33**, 479
4. Hori, T., Kiang, A. K., Nakanishi, K., Sasaki, S. and Woods, M. C. (1967) *Tetrahedron*, **23**, 2649
5. Overton, K. H., Wier, N. G. and Wyhr, A. (1966) *J. Chem. Soc. C* 1482
6. Barton, D. H. R. and Luckson, L. M. (1962) *J. Chem. Soc.* 4816
7. Michiko Yenemitsu, Naomichi Fukuda, Takeatsu Kimura and Tetsuya Komori. (1986) *Liebigs Ann. Chem.* 1327
8. Ognakwari, E. U., Gallelli, C., Naschitz, M., Messmer, E. and Marini-Bettolo, G. B. (1986) *Planta Med.* 198
9. Dampawan, P., Engelhardt, L. M., Taylor, W. C., White, A. H. and Wutiyachitra, P. (1986) *Aust. J. Chem.* **39**, 177
10. Manabe, S. and Nishino, C. (1986) *Tetrahedron* **42**, 3461.
11. Ramstad, E., Powell, J. W. and Willson, B. J. (1975) *Phytochemistry* **14**, 2119

A SOYASAPOPENOL-B GLUCOSIDE FROM THE SEEDS OF *PHASEOLUS VULGARIS*

D C JAIN, R S THAKUR, A BAJPAI* and A R SOOD*

Central Institute of Medicinal and Aromatic Plants, Lucknow 226016, India, *Sri G S Institute of Science and Technology, Indore 452001, India

(Received 29 June 1987)

Key Word Index—*Phaseolus vulgaris* Leguminosae triterpenoid glucoside soyasapogenol B-24-O- β -D-glucopyranoside

Abstract—A new triterpenoid glucoside has been isolated from the seeds of *Phaseolus vulgaris* and characterized as 3 β ,22 β -dihydroxy olean-12-en-24-O- β -D-glucopyranoside.

INTRODUCTION

Seeds of *Phaseolus vulgaris* Linn (French bean) are a rich source of saponins [1]. Crude extracts of the seeds show antifertility activity [2] and are known to contain phyto-sterols, triterpenoids and triterpenoid saponins [3–6].

RESULTS AND DISCUSSION

The new triterpenoid glucoside (**1**) was isolated from a methanolic extract of the seeds by column chromatography and purified by droplet counter current chromatography (DCCC).